

Longcroft School Mission Statement

Longcroft strives to be a positive, warm and welcoming school where pupils aim to do their very best and, with great heart, thought and vision, take pride in their achievements and those of our community. By constantly challenging our pupils to excel, we nurture aspiration and strive to cultivate a lifelong love of learning in our young people. We provide a creative, safe, inclusive and caring environment where every child is known and cared for as an individual. In this climate, every young person has the opportunity to thrive as they develop in personality, character and intellect and become a highly successful learner and individual.

Introduction

This document outlines the curriculum and key considerations including:

- Aims and purpose
- Alignment with the whole school provision and curriculum intent
- A summary programme of study which includes sequencing of taught content

We use the National Curriculum as our statutory foundation and broadly share its principles and aims including:

- 'To provide pupils with an introduction to the essential knowledge that they need to be educated citizens. To introduce pupils to the best that has been thought and said; and help engender an appreciation of human creativity and achievement'.
- To prepare students to be confident in themselves, to have a fulfilled and successful life beyond our school - one where they contribute positively to society.
- Our statutory curriculum is just one element in the education of every child. There is time and space in the school day and in each week, term and year to range beyond statutory specifications.
- Provision of a framework of core knowledge around which teachers can develop exciting and stimulating lessons to promote the development of pupils' knowledge, understanding and skills as part of the wider school curriculum.
- The wider school curriculum includes an extensive range of opportunities and activities that are routinely available to students, are inclusive and reflect our diverse community.

Inclusion

In accordance with our school curriculum statement, teachers will set high expectations for every pupil. They should plan stretching work for all pupils, including whose attainment is significantly above the expected standard. There is an even greater obligation to plan lessons for pupils who have low levels of prior attainment or come from disadvantaged backgrounds. Evidence based approaches must be taken to respond to specific needs including students with special educational needs and those for whom English is not their first language; and be regularly reviewed. Teacher's must at all times take account of their duties under equal opportunities legislation and act consistently with our vision and values.

Numeracy and literacy

Teachers should take opportunities to develop pupils' mathematical fluency, spoken language, reading, writing and vocabulary within their specific discipline and in line with the expectations laid out in our school curriculum statement.

Purpose of study

'Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.' Adapted from National Curriculum, DfE, 2014.

Aims

The Longcroft School and Sixth Form curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
- are confident in their mental arithmetic as well as in using when appropriate calculators.

Longcroft School Curriculum Overview
 MATHEMATICS

- are prepared to effectively articulate their knowledge and skills in the way that best represents these in statutory assessments such that they have the requisite outcomes to enable the widest access of opportunity.

Subject Curriculum Vision

The mathematics department strives to give students the confidence to acquire and use mathematical skills to become the engineers, scientists, politicians and teachers of the future. The department seeks to achieve excellence in the teaching and learning of mathematics, in order for the students to make significant progress, irrespective of their prior attainment in this varied subject. We are committed to ensure our young people are equipped with the skills to manage their daily finances and work/household commitments.

Our curriculum develops a deep mathematical understanding, our practices embeds the importance of mastering the essential skills through small steps that ensures proficiency before progressing to the next step.

We ensure our learner are able to assess risk and become independent and informed thinkers. The curriculum draws on content that ensure they have the acquired depth of understanding to be able to combine different mathematical disciplines to support more complex problem solving.

Our curriculum reflects our core school values of Great Heart, Great Thought and Great Vision:

Great Heart

To promote a welcoming, supportive, safe environment where both students and staff work together to challenge each other. Students will have the resilience to make mistakes, learning from their mistakes allowing them to gain in confidence achieving a feeling of success.

Great Thought

To provide an enriching, engaging and challenging mathematics curriculum for all, delivered to develop logical reasoning and problem-solving skills.
To provide a structured learning experience that is well sequenced, building effectively on prior learning that secures the knowledge and skills required for academic and real-world success.
To instil within our young people the enjoyment and confidence in tackling mathematical problems, by showing clear working out and reflecting to ensure progress.

Great Vision

To have a sense of purpose as to where their mathematical ability could lead them. To acknowledge that their hard work and commitment to learning now, will be rewarded in future accomplishments.

Key subject skills

Assessment Objective 1
Use and apply standard techniques
Students should be able to:

- accurately recall facts, terminology and definitions
- use and interpret notation correctly
- accurately carry out routine procedures or set tasks requiring multi-step solutions.

Assessment Objective 2
Reason, interpret and communicate mathematically

Students should be able to:

- make deductions, inferences and draw conclusions from mathematical information
- construct chains of reasoning to achieve a given result
- interpret and communicate information accurately
- present arguments and proofs
- assess the validity of an argument and critically evaluate a given way of presenting information.

Assessment Objective 3
Solve problems within mathematics and in other contexts

Students should be able to:

- translate problems in mathematical or nonmathematical contexts into a process or a series of mathematical processes
- make and use connections between different parts of mathematics
- interpret results in the context of the given problem
- evaluate methods used and results obtained
- evaluate solutions to identify how they may have been affected by assumptions made.

Building on prior learning - What can students do by the end of KS2?

Number - addition, subtraction, multiplication and division	Number - fractions (including decimals and percentages)	Ratio and proportion	Algebra	Measurement	Geometry	Statistics
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination Compare and order fractions, including fractions > 1 Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions Multiply simple pairs of proper fractions, writing	Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts Solve problems involving the calculation of percentages and the use of percentages for comparison Solve problems involving similar shapes where the scale factor is known or can be found	Use simple formulae Generate and describe linear number sequences Express missing number problems algebraically Find pairs of numbers that satisfy an equation with two unknowns Enumerate possibilities of combinations of two variables	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places	Draw 2-D shapes using given dimensions and angles Recognise, describe and build simple 3-D shapes, including making nets Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons Illustrate and name parts of circles, including radius, diameter and	Interpret and construct pie charts and line graphs and use these to solve problems Calculate and interpret the mean as an average.

Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate,
interpreting remainders according to the context

Perform mental
calculations, including with mixed operations and large numbers

Identify common factors, common multiples and prime numbers

Use their knowledge of the order of operations to carry out calculations involving the four operations

Solve addition and subtraction multi-step problems in contexts, deciding which
operations and methods
to use and why
Solve problems involving addition, subtraction, multiplication and division

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
the answer in its
simplest form
Divide proper fractions by whole numbers

Associate a fraction with division and calculate decimal fraction equivalents for a simple fraction

Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10 ,
100 and 1000 giving answers up to three decimal places

Multiply one-digit numbers with up to two decimal places by whole numbers

Use written division methods in cases where the answer has up to two decimal places

Solve problems which require answers to be rounded to specified degrees of accuracy

Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

| Convert between miles
 and kilometres | that the diameter is
 twice the radius |
| :--- | :--- | :--- |
| Recognise that shapes
 with the same areas can
 have different
 perimeters and vice
 versa | Recognise angles where
 they meet at a point,
 are on a straight line, or
 are vertically opposite,
 and find missing angles.
 describe positions on the
 full coordinate grid (all
 four quadrants) |
| Recognise when it is
 possible to use formulae
 for area and volume of
 shapes | Draw and translate
 simple shapes on the
 coordinate plane, and
 reflect them in the axes. |
| Calculate the area of
 parallelograms and
 triangles | |
| Calculate, estimate and
 compare volume of
 cubes and cuboids using
 standard units, including
 cubic centimetres (cm ${ }^{3}$)
 and cubic metres (m ${ }^{3}$),
 and extending to other
 units. | |

What are the skills gaps?

Longcroft School Curriculum Overview MATHEMATICS

$>$ Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
$>$ Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
$>$ Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit
$>$ Construct pie charts

Progression Map

Strand	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	Use the 4 operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers.		Ordering decimals. Rounding numbers and measures to an appropriate degree of accuracy	Calculate with and interpret standard form $\mathrm{A} \times 10^{\wedge} \mathrm{n}$, where $1<\mathrm{A}<10$ and n is an integer.	Converting between normal numbers and standard form.		
	Divide numbers up to 4 digits by a two-digit number using the formal written method of long and short division where appropriate, interpreting remainders according to the context	Use four operations with directed numbers	Calculations with money		Apply and interpret limits of accuracy . Change freely between related standard units. Use compound units such as speed, rates of pay, unit pricing, density and pressure.	Plotting and interpreting graphs in real contexts to find approximate solutions to problems such as simple kinematic problems		
		Explore powers, prime factorisation, Highest Common Factor (HCF) and Lowest Common Multiple (LCM)		Use positive integer powers and associated real roots. Recognise powers of 2, 3, 4, 5 . Estimate powers and roots of any given positive number	Calculate exactly with surds. Simplify surd expressions involving squares	Calculating with roots and with integer indices . Calculating with fractional indices	Understand and use the laws of indices for all rational exponents. Use and manipulate surds, including rationalising the denominator	
	Perform mental calculations, including with mixed operations and large numbers	Compare and order numbers						
	Identify common factors, common multiples and prime numbers	Use the concepts and vocabulary of prime numbers, factors (or divisors), multiples, common factors, common multiples, HCF, LCM, prime factorisation, including using product notation and the unique factorisation property		Fraction arithmetic including exact values	Change recurring decimals into their corresponding fractions and vice versa	Using inequality notation to specify simple error intervals		
	Use knowledge of the order of operations to carry out calculations involving the four operations	Understand fractions as division			Ratios and Fractions	Proving equivalence		
	Solve addition and subtraction multi-step problems in contexts.	Appreciate the infinite nature of the sets of integers, real and rational numbers						

Longcroft School Curriculum Overview
LONGCROFT

Strand	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
	Use common factors to simplify fractions; use common multiples to express fractions in the same denomination	Represent any fraction as a diagram or on a number line	Find the product of a pair of fractions	Define percentage as 'number of parts per hundred'	Expressing one quantity as a fraction of another			
	Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.	Order positive and negative integers, decimals and fractions; use the number line as a model for ordering of the real numbers; use the symbols $=, \neq,<,>, \leq$, \geq						
	Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10 , 100 and 1000.	Understand and use place value for decimals, measures and integers of any size	Write numbers of any size in standard form	Use positive integer powers and associated real roots (square, cube and higher). Estimate powers and roots of any given positive number.	Calculate exactly with surds. Simplify surd expressions involving squares	Calculating with roots and with integer indices . Calculating with fractional indices	Understand and use the laws of indices for all rational exponents, Use and manipulate surds, including rationalising the denominator	
	Use Simple Formulae	Use function Machines, form and solve one abnd two step equations	Solve inequalities, form and solve equations with brackets	Form and solve equations and inequalities with unknowns on both sides	Solving two linear simultaneous equations algebraically by elimination. Solving two linear simultaneous equations graphically or algebraically by substitution	Using inequality notation to specify simple error intervals	Work with quadratic functions and their graphs; the discriminant of a quadratic function; completing the square; solution of quadratic equations. Express solutions through correct use of 'and' and 'or' or through set notation. Represent linear and quadratic inequalities graphically.	
	Generate and describe linear number sequences	Recognise linear and non linear sequences, generate sequences	Find the nth term for a linear sequence	Testing conjectures about sequences. Representing sequences. Fnding the rule for the nth term of a linear sequence	Recognise and use: sequences of triangular, square and cube numbers; simple arithmetic progression; Fibonacci type sequences; quadratic sequences, and simple geometric progressions	Further Maths - Pascals triangle	Understand and use the binomial expansion of (a $+b x) n$ for positive integer n	Extend to any rational n including its use for approximation

MATHEMATICS

Strand	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
	Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius	Know properties of triangles and quadrilaterals, name and construct polygons	Explore diagonals of quadrilaterals	Surface area of cuboids. Volume of cuboids and prisms. Surface area of prisms	Derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus and triangles and other plane figures using appropriate language	Perimeter of polygons.		Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between
	Draw 2-D shapes using given dimensions and angles, recognise, describe and build simple 3-D shapes, including making nets	Geometric notation		Explore volumes of cones, spheres and compound shapes.	Standard ruler and compass constructions. Know that the perpendicular distance from a point to a line is the shortest distance to the line. Use these to construct given figures and solve loci problems.	Mixed loci problems		
	Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons	Simple angle proofs	Find and prove simple geometric facts	Recognise rotational symmetry,rotate points about a given point. Perform a series of transformations.	Apply and use the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar	Congruence criteria for triangles. Simple geometric proofs		
	Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.	Draw lines, angles and simple shapes	recognise line symmetry, reflect shapes in a given line		figur			

MATHEMATICS

Strand	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.	Parallel and perpendicular lines	Interior and exterior angles of a polygon, angles in parallel lines	Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs	Know the formula for Pythagoras' Theorem. Apply it to find angles and lengths in right angled triangles and, where possible, general triangles in two and three dimensional figures.	The sine rule. The cosine rule. Area of a triangle using sine. Mixed problems using trigonometric formulas. Graphs of trigonometric functions.	Understand and use the sine, cosine and tangent functions, their graphs, periodicity and symmetry. Understand and use the trig identities for tan, sin and cos	Know and use exact values in radian form. Work with radian measure. Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent
	Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons	Angles at a point, vertically opposite, quadrilaterals			Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors Use vectors to construct geometric arguments and proofs		Use vectors in two dimensions. Calculate the magnitude and direction of a vector and convert between component form and magnitude and direction form	
	Convert units of measure, using decimal notation up to three decimal places where appropriate	Solve perimeter	Circumference of a circle	ace are and volume cylinc	Surface area and volume cones, spheres and frustrums			
	Recognise that shapes with the same areas can have different perimeters and vice verse	problems	Circumference of a circle			Calculate exactly with multiples of 'pi'		
	Recognise when it is possible to use formulae for area and volume of shapes, inc. parallelograms and triangles	Area rectangles, parallelograms, triangles, trapezium	Area circle, and compound shapes					

Strand	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13
	Construct line graphs and pie charts	Solve problems with line charts, bar charts and pie charts	Construct and interprete frequency tables grouped and ungrouped and two way tables	Interpret analyse and compare distributions of data sets from inivariate empirical distributions through appropriate graphical representations involving discrete,continous and grouped data	Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling		Link to discrete and continuous distributions	
	Calculate and interpret mean as an average	Find median, range and mean	Find the mode, identify outliers, find distribution using statistical measures	Find the modal class. Compare distributions. Find the median and quartiles from cumulative frequency diagrams	Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through appropriate measures of central tendency and spread	Applying statistics to describe a population	Calculate standard deviation, including from summary statistics. Calculate expected frequencies associated with the binomial distribution	Understand and use the Normal distribution as a model; find probabilities using the Normal distribution
		Language of probability, calculate probabilities, probability scale, sample space, set notation, venn diagrams and probability adds to 1.	Construct sample space for more than one event and find probabilities, use tables and venn diagrams	Compare experimental and theoretical probability.Use frequency trees to find probabilities.Simple tree diagrams	Apply ideas of randomness, fairness and equally likely events to calculate expected outcomes or multiple future experiments. Relate relative expected frequencies to theoretical probability.	Expected value. Properties of probability. Tree diagrams. Conditional probability	Understand and use mutually exclusive and independent events when calculating probabilities	Understand and use conditional probability. Understand and use conditional probability formula
			Recognise different types of data				Understand and apply the language of statistical hypothesis testing, developed through a binomial model	Understand and apply correlation coefficients as measures of how close data points lie to a straight line and be able to interpret a given correlation coefficient using a given p-value or critical value
							Conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context	Conduct a statistical hypothesis test for the mean of a Normal distribution with known, given or assumed variance and interpret the results in context

Longcroft School Curriculum Overview MATHEMATICS								
Strand	Year 6	Year 7	Year 8	Year9	Year 10	Year 11	Year 12	Year 13
흔							Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion, use methods of proof,including proof by deduction, proof by exhaustion. Disproof by counter example	Proof by contradiction (including proof of the irrationality of root 2 and the infinity of primes, application to unfamiliar proofs

	Autumn			Spring			Summer		
$\begin{aligned} & \stackrel{\imath}{0} \\ & \underset{\sim}{0} \end{aligned}$	Topics	Links to prior learning	How does this prepare students for future learning?	Topics	Links to prior learning	How does this prepare students for future learning?	Topics	Links to prior learning	How does this prepare students for future learning?
7	Sequences generate and describe linear sequences Understanding and using algebraic notation	Use simple formulae. Generate and describe linear number sequences. Express missing number problems algebraically.	Autumn Block 2 Generate sequences from an algebraic rule Spring Block 4 Revisit notation and substitution in the context of directed number. Spring Block 5 Additional Higher content. Simple algebraic fractions Summer 3 Explore related algebraic expressions. Using coordinates. Spring Block 4 Revisit collecting like terms in the context of directed number. Spring Block 4 Form and solve two-step equations	Solving problems with addition and subtraction Solving problems with multiplication and division	Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication . Divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by	Autumn Block 1 Circumference of a circle Spring Block $4 \cdot$ Use the four operations with directed number Spring Block 5 - Add and subtract fractions including mixed numbers Summer Block 3 . Use Known facts. Summer Block 2 - Area of a trapezium \cdot Area of a circle - Area of compound shapes Spring Block 5 Additional Higher content, Simple algebraic Fractions.	Addition and subtraction of fractions Constructing, measuring and using geometric notation	Recognise, describe and build simple 3-D shapes, including making nets. Draw 2-D shapes using given dimensions and angles. Compare and classify geometric shapes based on their properties and sizes. Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius	Multiply and divide fractions. Additional Higher content Multiply and divide mixed numbers Summer Blocks 1/2/3 Revise and extend Y7 coverage. Additional Higher content Explore diagonals of quadrilaterals
	Equality and Equivalence Place value, ordering numbers and integers	Solve number and practical problems that involve all of the above. Identify the value of each digit in numbers given to three decimal places. Multiply and divide numbers by 10,100	Spring block 2 Use factors and multiples. Spring Block 4 Order directed number. Summer Block 5 Prime factorisation. HCF and LCM	Fractions and percentages of amounts	rounding, as appropriate for the context Use estimation to check answers to calculations and determine, in the context of a problem, an	Summer 3 Explore related algebraic expressions. Revise and extend Y 7 coverage. Solve inequalities. Form and solve equations with brackets. Identify and use formulae,	Developing geometric reasoning	Describe positions on the full coordinate grid (all four quadrants) Draw and translate simple shapes on the coordinate plane, and reflect them in the axes	Summer Block 1 Revise Y7 coverage. Angles in parallel lines. Interior and exterior angles of polygons. Additional Higher content Angles formed by diagonal of quadrilaterals
		and 1000 giving answers up to three decimal places. Multiply one-digit numbers with up to two decimal places		Operations and equations with directed numbers	appropriate degree of accuracy. Round any whole number to a required degree of	expressions, identities and equations. Summer 3 Explore related algebraic expressions. Revise	Developing number sense	Find unknown angles in any triangles, quadrilaterals, and regular polygons	Revisit and extend Y7 work including: • Convert between units of time - order of operations • Calculate with money - Use

	Fraction, decimal and percentage equivalence Solving problems with addition and subtraction	by whole numbers. Use written division methods in cases where the answer has up to two decimal places. Solve problems which require answers to be rounded to specified degrees of accuracy Associate a fraction with division and calculate decimal fraction equivalents (for example, 0.375) for a simple fraction (for example $3 / 8$). Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	Spring Block 4 Use the four operations with directed number. Spring Block 5 Add and subtract fractions including mixed numbers. Summer Block 3 Use known facts	Addition and subtraction of fractions	accuracy. Use negative numbers in context, and calculate intervals across zero. Solve number and practical problems that involve all of the above	and extend Y 7 coverage. Solve inequalities. Form and solve equations with brackets. Identify and use formulae, expressions, identities and equations. Additional Higher Content: Form and solve equations with inequalities and unknowns on both sides	Sets and probability Prime Numbers and proof	Identify common factors, common multiples and prime numbers	estimation Additional Higher context - Convert metric units of length and area Use error interval notation Autumn Block 6 • Review and extend Y7 coverage • Construct sample spaces for more than one event . Use sample spaces to find probabilities. Use tables and Venn diagrams to find probabilities. Additional Higher content Use the product rule for finding total number of outcomes Spring Block 5 Revisit Y7 comparing and ordering - Write numbers of any size in standard form Additional Higher content - Use negative and fractional indices
8	Ratio and Scale Multiplicative Change Multiplying and dividing fractions	Use multiplicative relationships between known facts Use multiplicative relationships between known facts Add and subtract fractions including mixed numbers	Ratios in the context of area and volume; gradients as a rate of change Scale drawings Revisit conversion graphs - solve direct proportion problems inverse proportion Fraction arithmetic including exact values	Brackets, equations and inequalities Sequences	Understand the difference between equality and equivalence, collecting like terms. Simple algebraic fractions. Explore related algebraic expressions Recognise linear and non-linear sequences. Generate sequences	Change the subject of a formula. Testing algebraic conjectures. Expand a pair of binomials. Form and solve equations and inequalities with unknowns on both sides Testing conjectures about sequences. Representing sequences. Finding the	Number sense Angles in parallel lines and Polygons Area of trapezia and circles	Order of operations. Round to powers of 10 and 1 significant figure. Properties of triangles and quadrilaterals. Angles at a point. Adjacent angles on a straight line. Solve perimeter problems. Area of	Financial maths. Estimate powers and roots. Error intervals and calculations with bounds Chains of reasoning to find angles. Bearings. Standard ruler and compass constructions. Loci Surface area of cuboids and cylinders.

	Working in the Cartesian Plane Representing data Tables and Probability	Represent functions graphically Sequences Construct and interpret Pie Charts. Solve problems with line charts and bar charts Use the language of probability. Calculate simple probabilities. Use the probability scale. Sample spaces. Understand and use set notation, including Venn diagrams	Use the form $\mathrm{y}=\mathrm{mx}+$ c to identify parallel and perpendicular lines, find the equation of the line through given points, or through one point with a given gradient Construct and interpret diagrams for grouped discrete data and continuous data Compare experimental and theoretical probability. Use frequency trees to find probabilities. Simple tree diagrams
9	Coordinates and Linear Graphs	Plot graphs of equations that correspond to straight line graphs in the co-ordinate plane	Identify and interpret gradients and intercepts of linear functions graphically and algebraically. Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal function
	Sequences	Substituting numerical values into formulae and expressions	Deduce expressions to calculate the nth term of linear and quadratic sequences
	Equations	Simplify and manipulate algebraic expressions	Solving two linear simultaneous equations algebraically by elimination.

MATHEMATICS

Volume of cuboids

 cylinders and other prisms. Explore volumes of cones spheres and compound shapes. Surface area of prismsRecognise rotational
symmetry, rotate
points about a given point. Perform a
series of
transformations
Interpret analyse and compare distribution of data sets from invariant empirical distributions through appropriate graphical representations

Find the modal class. Compare
distributions. Finding distributions. Findian and the median and quartiles from
cumulative frequency cumulative Understand and use proportion as equality of ratios. Relate ratios to fractions and to linear functions.

Basic Fractions \quad Equivalent fractions and simplifying fractions. Calculate exactly with fractions

Apply the four operations,

 including formal written methods, toFactors, multiples and primes assorted problems

Apply the four
rectangles,
parallelograms and
triangles. Area of a
trapezium

Solve problems with line charts and bar charts. Construct and interpret pie charts

Find the median and the range. Find the mean

Equivalent fractions and simplifying fractions.
Expressing one quantity as a fraction of another Using ratio notation, and reducing ratios to simplest form

Round numbers and measures to an appropriate degree
of accuracy (e.g. to a specified number of decimal places or significant figures) Use inequality notation to specify simple error intervals due to

rule for the nth term of a linear sequence Laws of indices. Work with powers and roots		rectangles, parallelograms and triangles. Area of a trapezium
Working with ratios and fractions. Reverse percentages. Financial maths. Repeated percentage change.	Line Symmetry and reflection	
		The data handling cycle
Standard form	Solve problems with line charts and bar charts. Construct and interpret pie charts.	

Apply and interpre limits of accuracy including upper and lower bounds

Basic Algebra	(including those involving surds) by: collecting like terms multiplying a single term over a bracket taking out common factors Use conventional notation for priority of operations, including brackets, powers, roots and reciprocals. Understand and use the concepts and vocabulary of expressions, equations, formulae, identities, inequalities, terms and factors	Solving two linear simultaneous equations graphically or algebraically by substitution Simplify and manipulate algebraic expressions (including those involving surds) by collecting like terms, multiplying a single term over a bracket, taking out common factors. Solve linear equations in one unknown algebraically including those with the unknown on both sides of the equation
Perimeter and Area Circumference and area 2D Representation of 3D shapes	Students will need to understand the definition of polygon. A knowledge of the four operations is assumed-in particular the ability to multiply. Know and use the formulae: Circumference $=2 \pi$ Radius $=\pi d$ Area $=\pi r^{2}$	Lengths, areas and volumes in similar shapes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& properties of polygons. Properties of special triangles and quadrilaterals \& \& \& \& \\
\hline \multirow[t]{7}{*}{10} \& \begin{tabular}{l}
Standard Form \\
Calculating with Percentages
\end{tabular} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Understand and use place value (e.g. when working with very large or very small numbers) \\
Interpret fractions and percentages as operators. Converting terminating decimals into fractions and vice versa. \\
Changing between standard units and compound units in numerical and algebraic contexts
\end{tabular}} \& Rounding numbers and measures to an appropriate degree of accuracy. \& Pythagoras Theorem and basic Trigonometry \& \multirow[t]{7}{*}{\begin{tabular}{l}
2D geometry terms and notation. Conventions for labelling the sides and angles of triangles. Angles at a point, angles at a point on a straight line, vertically opposite angles. Alternate and corresponding angles on parallel lines. Properties of special triangles and quadrilaterals \\
Calculate and interpret conditional probabilities through \\
representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams \\
Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal function \\
Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors
\end{tabular}} \& Use of Pythagoras theorem in 2D and 3D. Be able to apply trigonometry and Pythagoras theorem to 2 and 3 dimensional problems including the angle between a line and a plane and the angle between two planes. \& Real Life Graphs

Volume \& \begin{tabular}{l}
Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal function

Know and apply the formulae to calculate the volume of cuboids and other right prisms (including cylinders)

 \&

Calculating or estimating the area under a graph. Interpreting gradients of graphs and areas under graphs in the context of kinematics

Calculate exactly with multiples of 'pi
\end{tabular}

\hline \& Measures \& \& Plotting and interpreting graphs in real contexts to find approximate solutions to problems such as simple kinematic problems \& Probability \& \& Conditional probability \& Direct and Inverse Proportion \& | cylinders) |
| :--- |
| Constructing and interpreting equations that describe direct and inverse proportion | \& Recognising and interpreting graphs that illustrate direct and inverse proportion

\hline \& Statistical Measures \& Interpreting fractions and percentages as operators \& Applying statistics to describe a population \& \& \& \& Inequalities \& Solving linear equations in one unknown algebraically where the unknown is on \& Solve linear inequalities in one or two variables and quadratic inequalities in one variable

\hline \& Indices \& Using powers and roots \& Converting between normal numbers and standard form \& Sketching Graphs \& \& Plotting and interpreting graphs in real contexts to find \& \& both sides of the equation \&

\hline \& Construction and Loci \& 2D geometry terms and notation \& Constructing triangles. Mixed loci problems \& \& \& approximate solutions to problems such as simple kinematic \& \& \&

\hline \& Number recap and review \& A knowledge of the four operations is assumed. \& Using inequality notation to specify simple error intervals \& \& \& problems \& \& \&

\hline \& Algebra recap and review \& Substituting numerical values into formulae and expressions. Plotting straightline graphs of the form $y=m x+c$ \& Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal function \& \& \& \& \& \&

\hline
\end{tabular}

	Congruence and similarity SURDS	Angles at a point, angles at a point on a straight line, vertically opposite angles A knowledge of graphs will allow you to link arithmetic, geometric and quadratic sequences to linear, exponential and quadratic graphs respectively.	Simple geometric proofs Pythagoras' theorem Pythagoras- and surds assorted problems. Trigonometric ratios \sin , \cos and tan. Inverse trigonometric functions	Properties of Polygons	Derive and use the sum of angles in a triangle	Congruence criteria for triangles (SSS, SAS, ASA, RHS)			
11	Algebra: introduction to quadratics and rearranging formulae Linear and quadratic equations and their graphs Algebra; Further Quadratics, Rearranging Formulae and Identities Growth and Decay Equations of a Circle (Higher) Further Equations and Graphs	Using and interpreting algebraic notation Understand and use standard mathematical formulae Rearrange formulae to change the subject Simplify and manipulate algebraic expressions by expanding products of two binomials or factorising quadratic expressions Solving problems involving percentage change Circle parts definitions and properties. Pythagoras' theorem Simplifying and manipulating algebraic		Inequalities Vectors (Higher) Further Sketching Graphs Sine and cosine rule (Higher) Transforming functions (Higher) Numerical methods	Solving linear equations in one unknown algebraically where the unknown is on both sides of the equation Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors Substituting numerical values into formulae and expressions. Plotting straightline graphs of the form $y=m x+c$ Trigonometric ratios - sin, cos and tan. Inverse trigonometric functions Interpreting functions and composite functions		Gradients and Rates of change Pre- calculus and area under a curve (Higher) Algebraic fractions (Higher)	Identifying and interpreting gradients and intercepts of linear functions graphically and algebraically Plotting and interpreting graphs in real contexts to find approximate solutions to problems such as simple kinematic problems Using and interpreting algebraic notation	

MATHEMATICS

	Simultaneous equations Direct and Inverse proportion (Higher)

(Higher)	Relationships between operations, including inverse operations (Higher)
	Conventions for labelling the sides and angles of triangles (essential). Angles at a point, angles at a point on a straight line, vertically opposite angles (essential). The sum of angles in a triangle and the angle properties of polygons (essential) Properties of special triangles and quadrilaterals (essential)

Date	Event/Project	About	Events/Links
September			
	Maths Story Telling Day	Maths Storytelling Day encourages everyone to tell stories through maths. This is a day to appreciate all the ways maths enhances our daily lives. The day is a great opportunity to get children excited about maths through stories and games. Maths stories can include logic, patterns, puzzles and numbers. Tell maths jokes and sing songs about maths. It's a great way to explore maths and promote learning.	- Library: Create a maths storybook -Play a story telling game - Display work in a collage - House competition: Develop maths puzzles that tell a story - Maths KS3 lesson
	BBC Maths Challenge	Maths Challenge is for pupils aged 9 to 11 and aims to consolidate their mental maths skills. The programmes aim to build pupils' confidence with the mental maths element of Key Stage 2 mathematics - the emphasis is on having fun with numbers! A great transition for Year 7 and maybe 8 School Radio - Maths Challenge (bbc.co.uk)	- Student voice: promote to form reps. - Assembly: Student voice read results, Challenge in assembly. Promote challenge - Use as a cross- curricular starter
October			
	Celebration of Mind	Held in honour of Martin Gardner's birthday, encourages a fun and playful approach to mathematics and logic puzzles. Celebrants can mark the day by doing fun maths puzzles, performing magic tricks, or even sharing maths stories. Puzzles \& Games ${ }^{\text {C }}$ Celebration of Mind	- Maths KS3/4 lesson - Use as a cross-curricular starter - House competition: Solve maths puzzles etc
November			
	STEM Day	The day is an opportunity to focus on helping kids advance in the fields of science, technology, engineering, art, and math. 50+ STEM activities for any classroom - Secondary.pdf	- Cross curricular lessons - Assembly: Student voice. Design a wallet, purse, or credit card holder for a target consumer, and explain the rationale underlying their design. Suggested Materials Paper; pens; ruler; card; scissors; sticky tape

Longcroft School Curriculum Overview MATHEMATICS			
			and glue; dimensions of bank cards/paper money etc. Promote competition. - Display of students work and competition
	Fibonacci Day	An annual holiday that honours one of the most influential mathematicians of the Middle Ages - Leonardo Bonacci. November 23 is celebrated as Fibonacci day because when the date is written in the $\mathrm{mm} /$ dd format $(11 / 23)$, the digits in the date form a Fibonacci sequence: 1,1,2,3.	- Maths KS3/4 lesson - Cross curricular lesson. Fibonacci and the Golden Ratio, The sequence in nature and architecture
All month	UKMT Challenges	United Kingdom Mathematics Trust. Solo competitions Competitions I UK Mathematics Trust (ukmt.org.uk)	- Student voice: promote to form reps. - Assembly: Student voice read results, Challenge in assembly. Promote challenge
December			
$26^{\text {th }}$ December	Charles Babbage's Birthday	Charles Babbage Biography. Mathematician (1791-1871) Charles Babbage was known for his contributions to the first mechanical computers, which laid the groundwork for more complex future designs.	- Cross-curricular computing lesson - Assembly
January			
	Euclid Birthday	Euclid of Alexandria was a Greek mathematician who is widely regarded as the founder of geometry. Euclid's Elements, a compilation of 13 books, is considered to be one of the oldest and most influential books on mathematics.	- Maths KS3/4 geometry lesson - Display of students work
February			
	e - Day	While not as well-known as Pi, e is also an irrational number that occurs naturally in the grand scheme of mathematics. Discovered by a number of mathematicians, it's useful in helping puzzle out exponential and logarithmic functions. The rough numerical equivalent of e is 2.7 , making the logical day to celebrate it February 7th.	- Cross-curricular lesson. Food and technology lesson making and eating foods that start with an e - Poetry lesson: Read the poetry of EE Cummings - KS3/4 Maths lesson
	Palindrome Days	A Palindrome Day happens when the day's date can be read the same way backward and forwards. The dates are similar to word palindromes in that they are symmetrical. 'BOB' is a palindrome.	- Cross curricular English lesson - - Explore palindromes in English, create your own sentences - Display students work

MATHEMATICS			
		- 12 February, 2021 (12-02-2021)	
March			
	World Maths Day	A celebration of maths. It's an opportunity to practise and develop your maths with an online competition with millions of participants from all over the world. This event marks how maths has developed over the years and means everyone can enjoy celebrating their maths skills. World Maths Day - World Maths Day Mathletics United Kingdom \| Empowering Maths Learning Online	- Student voice: promote to form reps. - Assembly: Student voice read results, Challenge in assembly. Promote challenge - Use as a cross- curricular starter
	British Science Week	British Science Week, run by the British Science Association is a ten-day celebration of science, technology, engineering and maths, featuring entertaining and engaging events and activities across the UK for people of all ages.	- Student voice: promote to form reps. - House competition - Display on entrants work Competitions: http://www.schoolscience.co.uk/competitions
$14^{\text {th }}$ March	Pi Day	This holiday recognizes the mathematical constant of Pi , which is often abbreviated to 3.14- hence the date of the holiday.	- Maths lesson - Film Club: Pi - Cross- curricular lessons: Food technology/Pi inspired Art
	Earth Hour	The annual Earth Hour lights out event is held worldwide towards the end of March to encourage individuals, households, communities and businesses to turn off their non-essential lights for one hour as a symbol for their commitment to the planet.	- Maths lesson exploring mathematical facts and figures around the day. - Library Lesson: Extract/Article environment, climate change.
April			
	Sonia Kovalevsky Mathematics Day	A way to encourage young women to pursue a career in a math or science field, inspired by Sonia Kovalevsky, an important Russian mathematician.	- Library lesson: Research on female Mathematicians particularly Sonia Kovalevsky
$15^{\text {th }}$ April	Euler's Birthday	Euler made significant contributions to almost every major field in mathematics, including algebra, trigonometry, and geometry. In physics, his works on fluid dynamics and Fourier series is unmatched.	- Maths lesson exploring Euler's work - Display of students work
May			

	Archimedes Birthday	Archimedes was one of the pioneers of geometry, who derived formulas for the area of a circle, volume, and surface area of a sphere. His method of determining the value of pi remained unchallenged and the only known way to calculate the circumference of a circle for decades.	- Maths lesson with focus on area of a circle, volume, and surface area of a sphere - Display of students work
June			
	World Environment Day	World Environment Day is celebrated on $5^{\text {th }}$ June every year, and is the United Nations' principal vehicle for encouraging awareness and action for the protection of our environment.	- Maths lesson exploring mathematical facts and figures around the day. - Cross curricular Science/Geography lesson - Library Lesson: Article on global warming, plastic pollution. Mathematical figures/analysis
$23^{\text {rd }}$ June	Alan Turing's Birthday	Alan Turing was a famous mathematician and World War II cryptanalyst, working for the British government.	- Film Club: The Imitation Game - Assembly
July			
	Yellow Pig Day	Despite its name, the day is not a celebration of the porcine world, but a celebration of the number 17.	- Maths lesson on the number 17. Research use prime numbers, create some mathematical facts - House competition on above
	AMSP	KS4 and KS5 Problem solving	- Enrichment activities

